Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

نویسندگان

  • X. H. Shao
  • S. J. Zheng
  • D. Chen
  • Q. Q. Jin
  • Z. Z. Peng
  • X. L. Ma
چکیده

The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradable Mg-Zn-Y alloys with long-period stacking ordered structure: optimization for mechanical properties.

To optimize the mechanical properties for biodegradable orthopedic implant, microstructures and tensile properties of Mg-Zn-Y alloys containing long period stacking ordered (LPSO) phase were investigated. For the as-cast Mg(100-3x)(Zn(1)Y(2))(x) (1 ≤ x ≤ 3) alloys, volume fraction of 18R LPSO phase increases with increasing the contents of Zn and Y. Mg(97)Zn(1)Y(2) alloy exhibits the optimal co...

متن کامل

Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy

The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical p...

متن کامل

Microstructures of Long-Period Stacking Ordered Phase of MgZnY Alloy

The microstructures of ¡-Mg, long-period stacking ordered (LPSO) phases, and kink bands in a Mg­Y­Zn alloy were observed by transmission electron microscopy (TEM). The results showed that extruded Mg97Zn1Y2 alloy included different kinds of phases: 2H-Mg, 2H-Mg with many stacking faults, 14H and 18R. Kink bands tended to occur in areas where there were many intermetallic compounds. The element ...

متن کامل

Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates

The effect of long period stacking ordered (LPSO) phase and γ' precipitates on the ageing behavior and mechanical properties of the extruded Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt.%) alloy was investigated. The results show that more β' phases precipitate during ageing treatment in the LPSO phase containing alloy so that the LPSO phase containing alloy exhibits a higher age-hardening response than the γ...

متن کامل

Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy

High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016